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3D multi-valued traveltime and amplitude maps

Lan Wang & Norman Bleistein

ABSTRACT

Ray-theoretic modeling requires accurate amplitude as well as phase both for
forward modeling and Kirchhoff inversion, among other applications. There are
no analytical solutions to the ray equations in realistic earth models, thus, we
must use numerical solutions to solve problems of interest. For three dimensional
applications, it is a challenge to develop numerical modeling codes that require
reasonable cpu time while achieving sufficient amplitude accuracy to be useful
in applications.

For the case of linear sloth (slowness squared or inverse wavespeed squared),
analytical solutions of the ray equations do exist, leading to a combined nu-
merical analytical technique. In this method, the physical model is decomposed
into tetrahedral blocks of sufficiently small size to allow for the linear sloth
approximation to be valid in each. Analytical solutions in each tetrahedron
are then pieced together to provide global solutions. The ray tracing with this
method is relatively fast. However, the wavespeed model generated by this tech-
nique is not sufficiently smooth to produce accurate amplitudes, numerically.
Recent attempts to further smooth the physical model defeat the advantage of
speed of the algorithm because the smoothness conditions across the faces of
the tetrahedra generate a coupled system of equations of a size proportional to
the number of tetrahedra in the global physical model. This is not practical in
3D. Thus, we conclude that a standard smoothed physical model on a Carte-
sian grid is likely to lead to a computer code of competitive cpu speed, when
amplitude accuracy—dynamics—is of as much concern as traveltime accuracy—
kinematics.

In either case, we use a wavefront construction technique, in which the size of
triangular plates connecting three nearby rays on the isochron (surface of con-
stant traveltime) is used as an indicator of adequate density of rays. When the
criteria for density of rays are violated, data at new points on the wavefront
are interpolated into the family of rays and the wavefront construction contin-
ues. In this manner, the method does not require excessive density of rays at
small traveltimes in order to maintain adequate density of rays at larger trav-
eltimes. The technique allows for multi-pathing (caustics) and for amplitude
propagation along each of the branches of the wavefront.

Applications of the modeling technique are shown.

Key words: amplitude, dynamic ray tracing, analytic ray tracing, wavefront
construction

Introduction

In this report, we address the problem of accurate
and efficient determination of multi-valued 3D maps
for amplitude as well as traveltimes or any other ray-
related variables throughout the target zone from any

shot and receiver position. The current interest in 3D
seismic imaging has considerably increased the impor-
tance of ray tracing methods in wave field computa-
tions. Among seismic modeling methods, ray tracing
methods provide a reasonable compromise between ac-
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curacy and computational efficiency. For the computa-
tion of traveltime, various methods have been described.
Among those, the finite-differencing (FD) method, i.e.,
FD-solvers of the eikonal equation, has recently become
a popular method for calculation of “first arrival” travel-
times (Vidale, 1988). However, this method suffers from
the disadvantages that it is restricted to the compu-
tation of first arrivals only and it produces unreliable
amplitudes. Both are severe disadvantages for Kichhoff-
type algorithms, such as the Bleistein/Cohen inversion
(Bleistein et al., 1987; Bleistein et al., 1996), where the
calculation of amplitudes is necessary to determine the
weighting factor in inhomogeneous media. Furthermore,
in complex media, such as near salt domes and in sub-salt
regions, later arrival traveltimes should be considered to
obtain better image quality. Amplitudes can be used,
among other things, to find most energetic arrivals.

Simultaneous computation of traveltimes and ampli-
tudes is possible by dynamic ray tracing (DRT). It pro-
vides accurate multiple arrivals, amplitude and phase.
Estimation of these ray data can be carried out either
by numerical solution of ray tracing equations in general
smooth grid-based models or by piecewise analytic solu-
tions for certain simple velocity functions in tetrahedral
models. Among the choices of ray tracing procedures,
the simplest and fastest solution of the ray tracing sys-
tem is usually based on its analytic solution, wherever
the complexity of the model allows one. This is usually
referred to as analytic ray tracing or cell ray tracing.
Generally, the whole medium is divided into suitable cells
(usually tetrahedra in 3D), in which the velocity can be
approximated by simple functions that permit analytic
ray solutions. The ray in the whole model is then ob-
tained as a chain of analytically computed segments. The
analytic ray tracing is usually performed for models in
which either the velocity, v(z:), or 1/v(z;), or 1/v*(z:),
is a linear function of Cartesian coordinates. The sim-
plest analytic solution for inhomogeneous medium is the
one for constant gradient of squared slowness, also re-
ferred as linear sloth media (Cerveny, 1987; Meng &
Bleistein, 1997). However, this assumption leads to tetra-
hedral cells with artificial second-order discontinuities at
their interfaces. As a consequence, this approach pro-
duces unreliable amplitude coefficients across the inter-
nal boundaries. Kérnig (1995) proposed a method us-
ing quadratic sloth. In this approach, the squared slow-
ness and its gradient with respect to spatial variables are
continuous across each cell boundary. The analytic solu-
tions for such a velocity function are determined by using
Laplace transform. Also, the computation of amplitude
can be largely simplified by calculating the ray Jacobian
directly from the analytical ray equations. However, the

problem of determining the cell constants in quadratic
sloth is rather difficult. The model design leads to a huge
matrix inversion problem, and is impractical in 3D. Only
2D implementation of the traveltime computation was
carried out by Kornig (1995). We have concluded that
the analytic approach in tetrahedral cells does not likely
offer efficient algorithms in dynamic applications.

Traditionally, numerical DRT is performed by shoot-
ing a fan of rays from the source and extrapolating trav-
eltimes and amplitude away from the rays into their
nearby regions (Cerveny, 1987; Virieux & Farra, 1991;
Sun & Biondi, 1995). The main disadvantage of the con-
ventional shooting method is the lack of control of ray
density in the search fan. Therefore, it is hard to reach
a favorable compromise between efficiency and reliabil-
ity, especially in complex 3D models. It also produces
shadow zones in areas of large velocity contrasts. The
wavefront construction traveltime computation method
(Vinje et al., 1996) offers a solution to this problem by
dynamically adding rays as needed. In this method, rays
are maintained by a triangular network, and are traced
stepwise in traveltime through the model. The wave-
fronts are then obtained automatically as a by-product
of the ray tracing. In this report, the idea of wavefront
construction is applied to 3D complex models for es-
timation of both traveltime and amplitude coefficients.
The dynamic interpolation of new rays assures that the
wavefront is equipped with sufficient ray density at each
computational step. Linear interpolation of traveltime
with respect to the simulated wavefronts and linear in-
terpolation of amplitude in terms of tube cross sectional
area are performed at grid points that fall into the sub-
volume formed by every two successive wavefronts. A
grid point can be passed by different sequences of wave-
fronts and, thereby, multi-valued arrivals can be detected
and recorded. In this manner, all the grid points in
the model are equipped with accurate—perhaps multi-
valued—traveltimes and amplitudes.

In the following sections, we first discuss the possi-
bility of applying analytic solutions in tetrahedral models
for amplitude estimation. Thereafter, we address some
important issues in numerical DRT such as interpolation
of new rays and estimation of parameters at grid points.
We also propose a smooth gridded model representation
for the purpose of computational efficiency. Finally, we
show results of applying this method to different velocity
models.

Dynamic ray tracing

This section is a brief review of the dynamic ray
tracing theory, based on Cerveny (1987), (1995). We be-
gin by introducing two coordinate systems involved in
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Figure 1. The ray-centered coordinate system. €3 is tangent
to the ray path Q. €] and €3 form a plane perpendicular to €3.
~1 and <2 are the ray parameters that specify the ray, usually
they are either the take-off angles(shown in this figure) or the
slowness vector components at the source.

DRT — the ray-centered coordinate system and the ray
parameter coordinate system.

The ray-centered coordinate system, denoted by
(g1, 92, 93), is a curvilinear orthogonal coordinate system
associated with any selected ray Q (see Fig 1). One coor-
dinate, say g3, corresponds to any monotonic parameter
along the ray, such as the arc length s, the traveltime
T or the parameter o, with dr = do/v?. Here, we take
g3 = T, the traveltime of ray {2 away from the source.
Thus, the traveltime, itself, is one of the coordinate axes
in the ray-centered coordinate system. Coordinates q:
and g2 form a 2D Cartesian coordinate system in the
plane ¥ perpendicular to  at g3 = 7, with the origin at
Q. The vector basis of the ray-centered coordinate sys-
tem connected with 2 is formed at any arbitrary point
g3 = 7 of ray Q by a right-handed triplet of unit vectors
€i(7),€:(7), €3(7), as shown in Fig 1. Unit vectors €(r)
can also be viewed as polarization vectors for isotropic
media. The unit vector €3 determines the direction of the
displacement vector of P waves, which is always linearly
polarized. Especially important are unit vectors €1, €3,
since they determine the polarization of S waves, when
we are dealing with vector solutions of the elastic wave
equation.

The ray parameter coordinates, (71,v2,73), are de-
fined as following: 71 and 72 are the ray parameters that
specify the ray, usually they are either the take-off an-
gles or the slowness vector components at the source;
43 is any monotonic parameter along the ray, s, 7 or
o. The Jacobian J of transformation from ray coordi-
nates, (y1,72,73), to the general Cartesian coordinates,
(z1,z2, 3), is an important factor in computation of the
ray amplitude (Bleistein, 1984). The ray amplitude has
the following form,

3D DRT 3

const

A(x1 xo) = \/I—I’ (1)
with,

_ a(Zhl‘z, x3)
J = det [3(’71,'72,’73)] ' @

Here, A(x,%0) is the amplitude at x = (z1,z2,3) cor-
responding to the source xo = (z10,%20,2Z30); J is the
Jacobian; and the constant is determined by the choice
of (71,72,73)-

The rays are defined as the characteristics of the
eikonal equation. That is, by transforming the eikonal
equation to the following six ray equation by using the
method of characteristic, (Bleistein, 1984)

dz;

— 2.
dr v P,
dp: _ 1 9v .
& = Teomy  =bL2 )

Here, z;(7) denotes the coordinates of position along the
ray, p;(7) denotes the components of the slowness vector,
7 denotes the traveltime along the ray, and v(z;) denotes
the velocity. System (3) is often referred as the kinematic
ray tracing (KRT) system.

Differentiating the KRT system (3) with respect to
the ray coordinates +; and applying Taylor approxima-
tion up to second-order in ¢; will generate the dynamic
ray tracing system. The DRT system can be expressed in
many forms and in various coordinate systems. The sim-
plest form of the DRT system is obtained in ray-centered
coordinates connected with the ray Q:

aQ _
dr v'P,
dpP 1
where Q, P and V are 2 x 2 matrices defined as
0g; .
Qi = 53—;, i,j=1,2,
Op; .
Hj = 5?,;_;_’ %l = 17 2’
e azv(quq27 S)
Vi = ogoq
499 q1=¢2=0
= HuvuHj, 4,j=1,2,
Hu = ip-€. (5)

Here, i are the basis vectors in general Cartesian coor-
dinates (z1,z2,z3) and H is the transform matrix from
(q1,492, g3) to (z1,z2,x3), its element Hy; represents the
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kth Cartesian component of basis vector €;. Elements
V;;j of the matrix V' are the second derivatives of veloc-
ity v with respect to ¢, and equivalent to the second
derivatives with respect to z; under transformation H.
Therefore, dynamic ray tracing (4) requires continuity of
the velocity field up to second derivatives.* Q is a trans-
formation matrix from the ray parameters 71,72 to the
ray-centered coordinate g, g2. Its determinant measures
the ray Jacobian (2), and is also called the geometrical
spreading factor. P is a transformation matrix from the
ray parameters 71,2 to the slowness vector component
in the ray-centered coordinate system. The quantity P
may also be defined by

K
P=== (6)

where K is the wavefront curvature. The KRT system
(3) computes the first derivatives of the traveltime field,
while the DRT system (4) relates the second derivatives
by the relationship,

M(r)=PQ™". (7)

where M is 2 x 2 matrix M of second derivatives of the
traveltime field with respect to the ray-centered coordi-
nate qi,qz, M; ; = 8°r/8qi0q;.

At caustic points, the ray Jacobian (2) or the de-
terminant of matrix Q vanishes. In 3D structure, there
are two kinds of caustic points depending on the range
of the matrix. The ray tube may shrink to a caustic sur-
face(envelope of rays) which is perpendicular to the di-
rection of propagation (a caustic point of the first or-
der); or the ray tube may shrink to a point (a caustic
point of the second order). In passing through the caus-
tic point of the first order, the ray Jacobian J changes
sign and the argument of J*/Z takes on the phase term
#+x /2. Similarly, in passing through the caustic point of
the second order, the phase term is «. The phase shift
due to caustics is cumulative. If we pass through several
caustic points along the ray, the total phase shift is the
sum of the individual phase shifts, this is often referred
as the KMAH amplitude.

Analytic ray tracing

It is known that the realistic velocity field of interest
is often rather complicated and can hardly allow a gen-
eral analytic solution of the ray tracing system. However,
analytic ray tracing plays an important role in wave field
computation. This is due, in part, because the analytic
solutions are valuable in the cell approach, in which the

* It is the numerical sampling across tetrahedral interfaces
that causes amplitude instability when the second derivative
is not continuous.

whole model is subdivided into a set of tetrahedral cells
with simple velocity functions within cells. The models
allowing analytic solutions are usually those with either
the velocity, or slowness, or squared slowness being a lin-
ear function of Cartesian coordinates. As we have men-
tioned before, this constraint does not provide enough
smoothness for amplitude estimation. In this section, we
discuss the analytic solutions for quadratic sloth media.

The quadratic sloth distribution, denoted by g, is
defined as a quadratic function in space,

1

wenenms) = A mnm)

A+ 2B;z; + Cijziz;. (8)

The analytical solutions for this distribution were found
by Koérnig (1995) using the Laplace transform. In the
Laplace domain, the ray coordinates, X;(s), are ratios
of polynomials of sixth and seventh order, respectively,
in s; this is the Laplace variable corresponding to o, the
ray tracing integral variable with do = v2dr. The ex-
pressions for the ray trajectories, z;(g), can be obtained
explicitly by inverse Laplace transform of X;(s) using
partial fraction expansions. Depending on the distribu-
tion of eigenvalues of C;;, the solutions of z;(c) are gen-
eralized into seven different forms. For each case, the ray
trajectories are in the general form

zi(o) =wirfr(o), i=1,2,3, k=12,.,T 9)

Here, the w;;’s are the weighting factors, which are func-
tions of o, pio, B; and Cj; with xio and p;o being the
initial position and slowness components; fx(o) are the
basis functions corresponding to the inverse transform of
the partial fraction expansions. One of them is unity, the
others are either low-order polynomials in o, or trigono-
metric, or hyperbolic function.

Now we propose an alternative to Kornig's (1995)
approach to calculate the amplitudes along rays. Notice
that the fi(c)’s in (9) are functions depending only on o,
and w;x's can be expressed in terms of zio, pio, and con-
stants B; and C;;. Therefore, if we choose y1 = pio, 12 =
p20 and 43 = o in (2), the ray Jacobian J can be calcu-
lated analytically,

Gt fi (o)
J = det %%’;‘g. F1(0)

wikgk (o)

det{J;;xjx(0)} (10)

with summation over the repeated index, k, and



o), 1=12
(o) ={ Bl (11)
gk(a)v i=3.

The coefficients J;jx can be expressed for all the seven
cases in (9). Notice that expression (10) has taken the
place of the DRT system (4), and it is less computation-
ally costly than solving the eight integral equations in
small time steps.

This approach of making quadratic sloth assump-
tion in tetrahedral models has eliminated the smoothing
procedure across the internal interfaces. However, the
constants A, B; and Cj; in (8) are usually not known in
advance from the given physical model. They have to be
determined from the discrete model. The assumption of
quadratic sloth is equivalent to the continuity of both
g and the gradient of g across the internal cell faces.
Therefore, the 10 constants A, B; and Cj; in one tetra-
hedron cannot be determined by the velocity values at
its four apices only, but also depend on the values in
the neighboring cells. Such a model design problem for
all the tetrahedral cells leads to a huge inverse problem.
If the whole model is divided into N cells, the size of
the coupled system of equation is proportional to 10N,
making the computation very time consuming. Further-
more, this inverse system is not always solvable, or has
solutions in a least squares sense, at best. This is im-
practical in 3D and considerably limits the applicability
of this approach.

From the above discussion, we see that although the
assumption of quadratic sloth in tetrahedral models pro-
vides accurate amplitudes, this assumption leads to a dif-
ficult and inefficient numerical problem for determining
the cell constants. And this problem exists in all exten-
sions to quadratic physical models, not particularly in
a quadratic sloth model. We conclude that analytic ray
tracing in tetrahedral models is not likely to give us an
efficient module for dynamics, although it has its appli-
cations in traveltime calculations.

Wavefront construction on smooth gridded
models

Here and below, we will focus on numerically solving
(3) and (4) for smooth gridded models. We will apply
the technique of wavefront construction (WFC) to both
kinematics and dynamics.

In the wavefront construction method, a relatively
sparse number of rays are shot initially. They differ
from each other by the two take-off angles, and are ex-
trapolated into the zone of interest by solving (3) and
(4) numerically with appropriate initial conditions. Re-
quired accuracy of traveltime and amplitude can be ap-
proached by various standard numerical procedures, such
as Runge-Kutta or predictor-corrector, for example. At
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any computational step, the wavefront is obtained as
a by-product of the ray tracing. The wavefront is rep-
resented by triangular plates that connect every three
neighboring ray endpoints on the WF. The nearby rays
in 3D are then defined and organized by such a triangu-
lar mesh consisting of the internal ordering of connect-
ing endpoints in each triangle and adjacent triangle(s) to
each of its sides. The processes of checking, interpolat-
ing of new rays and estimating of grid point parameters
(described below) are all performed within such a trian-
gular network. Rays are added and the original triangle
is subdivided into new triangles when certain criteria,
restricting the size of the triangular plates, are violated.
In this manner, the wavefront always has sufficient ray
density without a priori estimation of the number of rays
needed, or by imposing an excessive ray density on ini-
tiation. For complex 3D velocity models, the wavefront
surface may be very complicated, folding in on itself at
some parts, for example; however, no tears or holes in
the interior of the surface are allowed. In this sense, the
wavefront is complete. On the other hand, a grid point
can be passed by different sequences of wavefronts; multi-
valued arrivals can then be estimated and distinguished
by their initial take-off angles.

The most attractive advantage of the WFC method
is that it is more efficient than the conventional ray trac-
ing method. In addition, WFC gives better ray coverage,
especially in areas of large geometrical spreading where
conventional ray tracing may give no arrivals. Further-
more, compared to FD-solvers, the WFC method is not
restricted to the calculation of only first arrivals. Ampli-
tude and other ray theoretical quantities are also avail-
able. Thus, it meets the requirements for accurate mod-
eling of amplitude as well as phase, a requirement for
inversion as opposed to migration.

Ray interpolation

The wavefront construction method is largely de-
pendent on the procedure of interpolation of the wave-
front at each step. New ray endpoints must be added
along the simulated wavefront and must have the prop-
agation direction that the ray would have had if it had
been shoot from the source. This section addresses an
algorithm for this procedure.

Rays diverge and the wavefronts expand through the
wave-field. When new ray endpoints are needed to keep
a certain ray density on the wavefront, the whole trian-
gular network will have to be reorganized. The criterion
for this interpolation can be the area of triangles, which
must not exceed a pre-specified limit, and/or the angle
deviation of the slowness vectors of two adjacent rays,
which cannot be too large. New rays are always added
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& o
approximate center ray2 approximate center

(@) (b)

Figure 2. Interpolation of new rays and estimation of grid parameters are performed in a “ray tube”. (a)Interpolation of a
single new ray. The two ray endpoints and their propagation directions form two straight lines in 3D. An “approximate” center
can be defined as the midpoint of the line segment that connects the two straight lines at their points of shortest distance. This
approximate center, along with the two ray ends at the old WF, form a fan and a circular curve connecting the two ray end
points. The new ray position is then found along the dividing direction from the approximate center, and at its intersection
with the circular curve. Then the interpolated ray is traced from the old to the new WF. (b)Simple ray cell with an interior

grid point. Ray data are estimated with respected to the two simulated WFs.

«®
u\ﬁ‘a“ )

Figure 8. 3D wave field of a linear sloth model using WF
construction method. The grey part is the shadow zone.

in between the pairs of existing rays in order to meet the
criteria of size and shape of triangular plates on the wave-
front. Fig 2-a illustrates the interpolation of a single new
ray. The two ray endpoints and their propagation direc-
tions form two straight lines in 3D. An “approximate”
center can be defined as the midpoint of the line seg-
ment that connects the two straight lines at their points
of shortest distance. This approximate center, along with
the two ray ends at the old WF, form a fan and a circular
curve connecting the two ray end points. The new ray
position is then found along the dividing direction from
the approximate center, and at its intersection with the

Figure 4. The rays(white) of linear sloth model have a para-
bolic shape. The grey surface is the caustic surface of the ray
equations for this model.

circular curve. Other parameters along the new ray are
interpolated linearly.

There are other alternative methods of interpolating
new rays, such as the parameterization of a wavefront by
a third-order polynomial (Vinje et al., 1996). However,
they require special treatment in the vicinity of caustic
points, since only rays belonging to the same phase must
be used to determine quantities of the new ray. Moreover,
we do not use the curvature of the wavefront obtained
from DRT for the interpolation to keep the problems of
KRT and DRT separate. We have found this method
very stable.



Grid interpolation

Another interpolation procedure in DRT is the es-
timation of ray data at the output grid points. This is
our final goal of the ray tracing algorithm. We perform
the grid interpolation within ray tubes, which are prism-
shaped bodies bounded by three rays and the triangles
that connect them on the two WFs. First the grid points
falling into (or close to) each cell are found. Then, the
traveltime can be estimated at the each grid point in
a similar way to the interpolation procedure for new
rays(see Fig 2-b). The approximate center is determined
by the three rays with ray endpoints on any of the two
WPFs. The distances from each grid point to the approx-
imate center and to the simulated wavefront are calcu-
lated. The traveltime at the grid point is then recorded
as to +d/v, with to the time at the wavefront, d the dis-
tance of the grid point away from the wavefront, and v
the velocity at the grid point.

The above procedure is not suitable for interpolation
of amplitude, because the isochrons surface is usually not
the iso-amplitude surface. Here, we apply linear inter-
polation for amplitudes, which is based on the assump-
tion that the amplitudes vary only slowly; otherwise, the
validity conditions of the underlying asymptotic theory
would be violated. Since the ray Jacobian—the determi-
nant of @ in (4)—is proportional to the cross sectional
area of the ray tube, we interpolate the ray Jacobian
linearly with respect to the triangle areas on the two
wavefronts.

Another parameter that requires interpolation at ev-
ery grid point is the initial shooting direction, i.e., the
initial take-off angles of the ray that would reach the
grid point if the ray actually had been traced. This pa-
rameter is stored in order to distinguish between arrivals
because two arrivals at a grid point cannot have almost
equal take-off angles.

Model representation

The smoothness of the velocity model representation is
critical to the calculation of amplitudes. The integration
of the DRT system (4) requires continuity of the veloc-
ity field up to the second derivatives. Many ray tracing
procedures (Farra, 1990) involve a type of spline interpo-
lation for the evaluation of velocities at arbitrary points.
Spline interpolation, however, is a time consuming pro-
cedure. Here, we define the velocity model on a fine grid
(about three or four grid points per shortest significant
model wavelength) and pre-calculate its first and second
derivatives at all grid points by finite differences of sec-
ond order. For the evaluation of the velocities and their
derivatives at arbitrary points we use linear interpola-
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Figure 5. Four cross sections of the 3D SEG saltdome veloc-
ity model (subsection) at z = 1.5km,z = 3.5km,y = 1.5km,
and y = 3.5km.



8 L. Wang & N. Bleistein

Depth (km)

Figure 6. Triangulated wavefronts for smoothed salt dome
model at ¢ = 0.1,0.4,0.65, and 0.9s. The source is located at
the center of the up surface.

tion. For the smooth models defined on fine grids, the
difference between this linear representation and a spline
representation of the model is negligible.

When the considered model contains discontinuous
velocities, a smoothing procedure must be applied to
guarantee that the velocities vary smoothly. For the sake
of computational efficiency, the interface conditions are
eliminated here by using proper smoothing and a densely
sampled grid model.

Examples

The first example provides a test of the accuracy of
this modeling technique. The synthetic model we choose
for this test is the one with constant gradient of squared
slowness, i.e.,

2l B+ Bass+ Bazs (12)
v2(x) v ’

In such a medium, the rays have a parabolic shape; both
traveltime and amplitude field can be expressed exactly
by analytical solutions for comparison purposes. Figure
3 shows the 3D wave field with the gradient constants
being (0,0, —0.2)s?/km?. The relative difference of com-
puted traveltimes and analytic ones is less than 0.1%
through the whole interest area, while the differences be-
tween computed and analytical amplitudes are no more
than 1%. The grey part in Fig 3 is the shadow zone,
where no rays are entered. This is due to the negative
gradient constant of Bz, which is equivalent to the in-
creasing velocity with depth. In Figure 4, the grey sur-
face is the caustic surface of the ray equations. It is the
envelope of the parabolic rays.

The aim of the second example is to prove that
our tracing algorithm can operate on a complex velocity
model. This example is performed on a 3D SEG saltdome

velocity model. This synthetic velocity model contains
one complex salt dome with high velocity in the dome
and low and slowly varying lateral layers outside the salt
dome. Due to the RAM capacity of the computer, we
extracted a subsection of the original model, which has
part of the salt in the middle. The strong velocity con-
trast at the salt wall has violated the smoothness re-
quirement of ray tracing, therefore we first smoothed
this reference model. Figure 5 shows four cross sec-
tions of the smoothed velocity model. The grid size is
40m x 40m x 40m. Figure 6 shows some wavefronts for
this model. The wavefronts expand and become more
complex for the later traveltimes. However, by using
the wavefront construction technique, all the wavefronts
have sufficient ray density. Figure 7 presents cross sec-
tions of traveltime maps of the above smoothed velocity
model. The isochrons are spherical-like at the shallow
parts, but the shape changes due to the salt in the mid-
dle depth.

Conclusions

We have demonstrated that numerically solving
the ray equations on a smooth gridded model pro-
vides forward modeling that is fast enough for three-
dimensional computations. Both the traveltimes and am-
plitudes proved to be smooth and stable in our examples.
It remains to check the numerical accuracy of this tech-
nique, as compared to analytical solutions and alterna-
tive numerical methods. However, it is already known
that the tetrahedral-based approach produces unaccept-
able amplitudes, due to the difficulty in efficiently obtain-
ing accurate amplitudes across the internal interfaces.

The WFC procedure based on proper interpolation
of new rays makes the dynamic ray tracing more effi-
cient and results in a dense and consistent ray coverage
throughout the model, even in areas of large geometrical
spreading. When accurate amplitudes are required, we
believe that this is a competitive method for develop-
ment of ray theoretic wavefields.
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